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The interaction of ferroelectric 180°-domain wall with a strongly inhomogeneous electric field of biased
scanning probe microscope tip is analyzed within continuous Ginzburg-Landau-Devonshire theory. Equilib-
rium shape of the initially flat domain-wall boundary bends, attracts, or repulses from the probe apex, depend-
ing on the sign and value of the applied bias. For large tip-wall separations, the probe-induced domain
nucleation is possible. The approximate analytical expressions for the polarization distribution are derived
using direct variational method. The expressions provide insight into how the equilibrium polarization distri-
bution depends on the wall finite width, correlation and depolarization effects, electrostatic potential distribu-
tion of the probe and ferroelectric material parameters.
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I. INTRODUCTION

Domain-wall motion in disordered media is one of the
fundamental mechanisms that control order-parameter dy-
namics in ferroelectric and ferromagnetic materials. The in-
terplay between wall stiffness, driving force, pinning, and
thermal excitations gives rise to a broad spectrum of remark-
able physical phenomena including transitions between
pinned, creep, and sliding regimes, dynamic phase transi-
tions, and self-organized critical behavior. This behavior con-
trolled by homogeneous external electric field was studied in
details both experimentally and theoretically.1–4 In most ex-
perimental studies to date, the domain-wall dynamics is in-
ferred from the macroscopic response of the system to mac-
roscopic field detected through changes in polarization, ac
susceptibility, lattice parameters, and pyroelectric, piezoelec-
tric, and optical properties. Recently, the local observations
of domain-wall geometry and its evolution in uniform exter-
nal fields have allowed direct information on static wall
structure formed after field application, dynamic avalanche
time and size distributions, and pinning on individual
defects.5–7

The emergence of the scanning-probe-microscopy �SPM�-
based techniques in the last decade opens the pathway to
concentrate electric field within a small ��10–100 nm� vol-
ume of material. Combined with electromechanical response
detection, this piezoresponse force microscopy �PFM� ap-
proach has been broadly applied for domain imaging and
polarization patterning. Piezoresponse force spectroscopy
was used to study polarization switching in the small vol-
umes with negligible defect concentration,8 map distribution
of random bond and random field components of disorder
potential,9 and map polarization switching on a single defect
center.10 These experimental developments have been
complemented by the extensive theoretical analysis of do-
main nucleation mechanisms in the SPM field probe on the
ideal surface11–13 and in the presence of charged defects in

the rigid ferroelectric approximation �abrupt domain
walls�.14 Recently, phase-field and analytical models have
emerged to treat this problem in the framework of Ginzburg-
Landau-Devonshire �GLD� theory �diffuse walls�.15 Here, we
develop the analytical theoretical model for the interaction of
the biased SPM probe and 180°-domain wall in the GLD
model, paving the way for experimental studies of micro-
scopic mechanisms of domain-wall polarization interaction
with electric field that can be studied in strongly inhomoge-
neous fields of biased force microscope probe.

We note that this problem is similar to that of domain-
wall pinning on a charged impurity, where the SPM probe
acts as a “charged impurity” with controlled strength �con-
trolled by tip bias� positioned at a given separation from
domain wall. In this context, the problem of the infinitely
thin ferroelectric domain-wall interaction with a charged
point defect was considered by Sidorkin;16 however, neither
correlation effects �e.g., finite intrinsic width of domain
walls� nor rigorous depolarization field influence were taken
into account. For the description of domain-wall equilibrium
position, the concept of Laplace tension �whose applicability
to ferroelectrics has not been studied in detail� was used
instead of the conventional GLD theory. Alternatively, ther-
modynamic Miller-Weinreich approach1 or its combination
with molecular-dynamics and Monte Carlo simulations as
proposed by Rappe and co-workers17 has been used. How-
ever, these models address domain-wall profile changes in
homogeneous external field.

In this paper, we consider the interaction of ferroelectric
180°-domain-wall polarization with a strongly inhomoge-
neous electric field of biased force microscope probe within
GLD thermodynamic approach. The nonlinear problem is re-
solved using direct variational method. The paper is orga-
nized as follows. The problem statement and basic equations
are presented in Sec. II. In Sec. III we calculate the influence
of the domain-wall finite width, correlation and depolariza-
tion effects, and ferroelectric material parameters on the
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equilibrium domain-wall profile in the vicinity of biased
probe. Coercive field for wall motion and domain nucleation
is considered in Sec. IV. The results and implications for
PFM studies of domain walls are discussed in Sec. V.

II. PROBLEM STATEMENT AND BASIC EQUATIONS

Here we consider the ferroelectric sample region that con-
tains 180°-domain wall positioned in the vicinity of charged
force microscope probe �Fig. 1�. The region is free of lattice
defects. Maxwell’s equations for the inner electric field
E�r , t�=−���r , t� expressed via electrostatic potential ��r , t�
and polarization P�r , t� with boundary conditions are

�div�P�r,t� − �0 � ��r,t�� = 0, z � 0,

��x,y,z = 0,t� = Ve�x,y,t� , ��x,y,z = h,t� = 0.
�

�1�

Potential distribution Ve�x ,y , t� is created by the biased probe
of force microscope. The probe is assumed to be in perfect
electric contact with the sample surface. Electrostatic poten-
tial ��r , t� includes the effects of depolarization field created
by polarization bound charges; �0 is the dielectric constant
and h is the film thickness. The perfect screening of depolar-
ization field outside the sample is realized by the ambient
charges, as shown in Fig. 1�a�.

The polarization P3�r , t� in uniaxial ferroelectrics is di-
rected along the polar axis z. The sample is dielectrically
isotropic in transverse directions, i.e., permittivities �11=�22.
The dependence of in-plane polarization components on
electric field is linearized as P1,2�−�0��11−1����r� /�x1,2.
We can rewrite the problem �1� for quasistatic electrostatic
potential as

	�33
b �2�

�z2 + �11
 �2�

�x2 +
�2�

�y2� =
1

�0

�P3

�z
,

��x,y,z = 0� = Ve�x,y,t� , ��x,y,z = h� = 0.
�
�2�

Here we introduced dielectric permittivity of background18

or reference state19 as �33
b . Typically �33

b �10. The back-

ground contribution origin can be related to the contribution
of dielectric polarizability from the nonferroelectric lattice
modes of the crystal.18

The corresponding Fourier-Laplace representation on
transverse coordinates x ,y� and time t of electric-field nor-

mal component Ẽ3�k ,z , f�=−��̃ /�z is the sum of external �e�
and depolarization �d� fields,

Ẽ3�k,z, f� = Ẽ3
e�Ve,k,z, f� + Ẽ3

d�P3,k,z, f� , �3a�

Ẽ3
e�k,z, f� = Ṽe�k, f�

cosh�k�h − z�/�b�
sinh�kh/�b�

k

�b
, �3b�

Ẽ3
d�P3,k,z, f�

=��
0

z

dz�
P̃3�k,z�, f�

�0�33
b cosh�kz�/�b�

cosh�k�h − z�/�b�
sinh�kh/�b�

k

�b

+ �
z

h

dz�
P̃3�k,z�, f�

�0�33
b cosh�k�h − z��/�b�

cosh�kz/�b�
sinh�kh/�b�

k

�b

−
P̃3�k,z, f�

�0�33
b � . �3c�

Here �b=��33
b /�11 is the “bare” dielectric anisotropy factor,

k= k1 ,k2� is a spatial wave vector, k=�k1
2+k2

2 its absolute
value, and f is temporal frequency of Laplace transforma-
tion. The corresponding Fourier-Laplace image of polariza-

tion is P̃3�k ,z , f�= �1 /2���0
�dt�−�

� dx�−�
� dy exp�ik1x+ ik2y

− ft�P3�x ,y ,z , t�. Ṽe�k , f� is the Fourier-Laplace image of
electric-field potential at the sample surface. For a transver-
sally homogeneous media, �33

b =1 and the static case Eq. �3c�
reduces to the expression for depolarization field obtained by
Kretschmer and Binder.20

In the framework of GLD phenomenology, the spatial-
temporal evolution of the polarization component P3 of the
second-order ferroelectric is described by the Landau-
Khalatnikov equation

− �
d

dt
P3 = 	P3 + 
P3

3 − �
�2P3

�z2 − �
 �2P3

�x2 +
�2P3

�y2 � − E3.

�4�

The gradient terms are �0 and �0; the expansion coef-
ficients are 	�0 in ferroelectric phase, 
�0 for the first-
order phase transitions, and 
0 for the second-order ones;
and � is the Khalatnikov coefficient �relaxation time�. In the
absence of �microscopic� pinning centers or for weak pin-
ning of viscous friction type, the domain-wall equilibrium
profile can be found as stationary solution of Eq. �4�. Rigor-
ously, coefficient 	 should be taken as renormalized by the
elastic stress as 	−2Qij33�ij.

21,22 Hereinafter we neglect the
striction effects, which are relatively small for LiTaO3 and
LiNbO3.23

The initial and boundary conditions for polarization in Eq.
�4� are
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FIG. 1. �a� �Color online� Schematic of ferroelectric
180°-domain-wall boundary curved by the strong localized electric
field of the biased probe in contact with the sample surface. �b� Wall
curvature at the sample surface in quasicontinuous media approxi-
mation �solid curves and color scale�. Dashed rectangle corresponds
to the schematic of activation field calculations used by Miller and
Weinreich �Ref. 1� for rigid polarization model where the distance a
is equal to the lattice constant.
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P3�r,t � 0� = P0�r�, �
P3 − �1
�P3

�z
��

z=0
= 0,

�
P3 + �2
�P3

�z
��

z=h

= 0. �5�

Here P0�r� is the initial profile of domain wall that satisfies
Eq. �4� for zero external field. The extrapolation lengths �1,2
may be different for z=0 and h, reflecting the difference in
boundary conditions �e.g., free surface and ferroelectric-
electrode interface for thin film, or dissimilar electrodes for
capacitor structure or thin dielectric layer on the surface�.
Reported extrapolation length values are 0.5–50 nm.24

Equations �4� and �5� are the closed-form three-
dimensional-boundary problem for the determination of the
equilibrium domain-wall profile. The free-energy excess re-
lated to the polarization redistribution caused by the external
electric field E3

e can be defined as the energy difference �G
between the initial-state free energy G�P0 ,E3

e� and the final-
state free energy G�P3 ,E3

e� with equilibrium polarization dis-
tribution P3�x ,y ,z� found from Eq. �4�,

�G�P3,E3
e� = G�P0,E3

e� − G�P3,E3
e� , �6�

G�P,E3
e� = �

−�

�

dx�
−�

�

dy��
0

h

dz�	

2
P2 +




4
P4 +

�

2

 �P

�z
�2

+
�

2
���P�2 − P
E3

e +
E3

d

2
�� +

�

2�1
P2�z = 0�

+
�

2�2
P2�z = h�� . �7�

In the continuous media approximation, the stable domain-
wall boundary xDW�y ,z� can be defined from the condition
P3�xDW,y ,z , t���=0.

For the global excitation of ferroelectric sample with ho-
mogeneous external field E0

e, the energetic barrier �Ga re-
quired to move the domain-wall boundary by overcoming
the effect of the lattice discreteness �the simplest pinning
model� can be estimated as the difference between the initial-
state free energy G�P0 ,E0

e� and the equilibrium state
G�P3 ,E0

e� with the domain boundary local deviation from
initial profile equal to lattice constant a.1 However the simple
criteria should be modified for the considered case of probe-
induced domain-wall bending, since probe-induced domain
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FIG. 2. �Color online� �a� and �b� Bias dependence of PV on applied bias V for different domain-wall initial position x0 �labels near the
curves in nanometer�. Effective distance d=5 nm and material parameters for LiNbO3 are �11=84, 	=−2�109, �=10−9 in SI units �i.e.,
L�=0.5 nm�, and PS=0.75 C /m2. Dotted curves is linear approximation PV=V that works satisfactorily up to 5 V for the chosen material
parameters. �c� and �d� Polarization below the probe apex P3�0� for different x0 values �labels near the curves in nanometer�.
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nucleation far from the wall could appear. The behavior is
analyzed in more detail in Sec. IV.

For the global excitation of ferroelectric sample with rela-
tively small homogeneous external field E3

e, the dependence
of domain-wall velocity v on the electric field usually has
exponential form v�exp�−Ea /E0

e� in the regime of thermal
activation mechanism of domain-wall movement.1 In the
Miller-Weinreich model, the critical nucleus size determines
the activation energy and thus activation field Ea.

To determine the velocity v�x ,y ,z , t� of the domain-wall
movement far from the activated regime �i.e., in the very
large field limit� one can use the substitution dP3�r−vt� /dt
=−v� Pt and corresponding equation for the order
parameter.25 Keeping in mind that the right-hand side of Eq.
�4� is the free energy �6� variation derivative �G�P3� /�P3,
one obtains

vi�x,y,z,t� =
�G�P3�/�P3

���P3/�xi�
, �i = 1,2,3� . �8�

It is clear that the velocity tends to become zero in thermo-
dynamic equilibrium �G�P3� /�P3=0, as anticipated. Far
from the equilibrium, the variation derivative �G�P3� /�P3
can be regarded as generalized pressure similarly to the pres-
sure introduced in the rigid model for domain nucleation as

considered by Molotskii and Shvebelman.26 Below, we pro-
ceed with the analysis of the domain-wall geometry and ther-
modynamics as a key component in the analysis of wall dy-
namics. The effects of lattice and defect pinning on wall
dynamics will be analyzed elsewhere.

III. THERMODYNAMICS OF DOMAIN-WALL
INTERACTION WITH BIASED PROBE

A. Direct variational method

Hereinafter, we consider semi-infinite second-order ferro-
electrics with large extrapolation length �1���. Infinite ex-
trapolation length �1→� corresponds to the situation of per-
fect atomic surface structure without defects or damaged
layer. Corresponding surface energy proportional to
�� /2�1�P3

2�z=0� is negligibly small, and hence the domain-
wall energy is determined only by correlation term
�� /2���P3 /�z�2+ �� /2����P3�2. Mathematical details of cal-
culations for much more cumbersome case of finite extrapo-
lation length �1,2�� and sample thickness h�� are avail-
able in Appendices A and B of Ref. 27.

Potential distribution produced by the SPM probe on the
surface is approximated as Ve�x ,y , t�0��Vd /�x2+y2+d2,
where V is the applied bias and d is the effective distance
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FIG. 3. �Color online� Equilibrium surface profile of domain wall affected by biased probe. Material parameters for LiNbO3 are �11
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determined by the probe geometry.13,14 The potential is nor-
malized assuming the condition of perfect electrical contact
with the surface, Ve�0,0 , t�0��V. The corresponding
Fourier-Laplace image for a point-charge approximation of a
probe is

Ṽe�k, f� = V
w̃�k�

f
, w̃�k� =

d

k
exp�− kd� . �9�

In the case of local point-charge model, the probe is repre-
sented by a single charge Q=2��0�eR0V��+�e� /� located at
d=�eR0 /� for a spherical tip apex with curvature R0 ��
����33

b −1 /2�0	��11 is the effective dielectric constant de-
termined by the “full” dielectric permittivity in z-direction,
�e is ambient dielectric constant�, or d=2R0 /� for a flattened
tip represented by a disk of radius R0 in contact with the
sample surface.13,14

Using the perturbation theory, we search for the solution
of Eq. �4� in the form

P3�r,t� = P0�x� + p�r,t� . �10a�

Polarization distribution P0�x� satisfies Eq. �4� at zero exter-
nal bias Ve=0. Equation �4� reduces to 	P0�x�+
P0�x�3

− ����2P0�x� /�x2��=0. The solution for the initial flat
domain-wall profile positioned at x=x0 is

P0�x� = PS tanh��x − x0�/2L�� , �10b�

where the correlation length is L�=�−� /2	 and the sponta-
neous polarization is PS

2=−	 /
.
Since the distribution P0�x� does not cause depolarization

field, the operator E3
d�P0�x�+ p�r , t��=E3

d�p�r , t���0, i.e., de-
polarization effect is determined by the wall curvature.
Hence, the Eq. �4� with substitutions �10a� and �10b� ac-
quires the form

�
dp

dt
− 2	 + 3
�PS

2 − P0�x�2��p + 3
P0�x�p2 + 
p3 − �
�2p

�z2

− �
 �2p

�x2 +
�2p

�y2� = E3�Ve,p� . �11a�

Initial and boundary conditions for perturbation p�x ,y ,z , t�
are

p�r,t � 0� = 0, � �p

�z
�

z=0
= 0. �11b�

In continuous media approximation adopted here, in the
immediate vicinity of domain-wall polarization tends to be-
come zero and thus Eq. �11a� could be linearized with re-
spect to deviation p from initial profile P0. Using the method
of slow-varying amplitudes28 for the linearized Eq. �11a�
with x-dependent coefficient, we derived the linearized solu-
tion of Eqs. �11a� and �11b� as

p̃�k,z, f� � �33
b �0V

w̃�k�
f

�k2/�b
2 − s1

2��k2/�b
2 − s2

2�
s1s2�s1

2 − s2
2�

�s2 exp�− s1z�

− s1 exp�− s2z�� . �12�

Eigenvalues s1,2�k , f� are positive roots of biquadratic equa-
tion �s2−k2 /�b

2��−2	S+�k2−�s2�=−s2 / ��0�33
b �, namely,

s1,2
2 =

1 + �k2��/�b
2 + �� − 2	S��0�33

b

2�0�33
b �

�
1

2�0�33
b �

�1 + �k2��/�b
2 + �� − 2	S��0�33

b �2 − 4��33
b �0�2��k2� − 2	S�k2/�b

2. �13�

Note, that depolarization field �terms proportional to �0� and
correlation effects �terms proportional to � and �� determine
the spectrum s1,2�k , f�. In Appendix A of Ref. 27, we have
shown that the effective coefficient 	S is renormalized by
finite correlation length and lattice relaxation as

	S�x0,L�, f� = 	�1 −
6L��L� + d�

���L� + d�2 + x0
2�� −

�f

2
. �14�

Solution �12� is valid at small biases V, for which the
amplitude p remained small in comparison with PS.
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FIG. 4. �Color online� Equilibrium surface profile of domain-
wall boundary affected by biased probe �for x0=0,2 ,3 nm� and
probe-induced domain formation �for x0=5,7.5 nm�. Effective dis-
tance d=5 nm, applied bias V=5 V, and LiNbO3 material param-
eters are listed in Fig. 3.
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To obtain the domain-wall profile at arbitrary bias we
used direct variational method.29,30 In this method,
k-dependent �i.e., coordinate-dependent� part of linearized
solution �12� was used as the trial function in the free-energy
functional �G�P3 ,E3

e� given by Eqs. �6� and �7�, while the
amplitude was treated as a variational parameter PV, whose
dimensionality is volts. The consequence of this analysis is
that PV is a single parameter determining wall geometry and
contributing to free energy. Hence, system thermodynamics
is now described by a single scalar quantity rather than wall
coordinates �much like scalar order parameter in GLD�.

Direct integration of �G�P3 ,E3
e� along with Eqs. �9�,

�10a�, �10b�, �11a�, �11b�, and �12� allows us to determine the
amplitude PV as the solution of nonlinear algebraic equation
�see Appendix C of Ref. 27 for mathematical details�. Allow-
ing for the radial symmetry of normalized probe potential
w̃�k�, after elementary algebraic transformations, we ob-
tained the dependence of the equilibrium solution and the
free-energy functional on the applied bias V and other pa-
rameters in the form

P3�r� � P0�x� − PV�
0

� k2

�b
dkJ0�k�x2 + y2�w̃�k�

�
�s2 exp�− s1z� − s1 exp�− s2z��

����k2 − 2	S��s1
2 − s2

2�
, �15a�

�G�PV� � �d� �0�11

− 2	S

− PVV +

PV
2

2
+

w3

3
PV

3 +
w4

4
PV

4� ,

�15b�

PV + w3PV
2 + w4PV

3 = V , �15c�

where J0 is Bessel function of zero order and the roots s1,2
and coefficient 	S are given by Eqs. �13� and �14� under the
condition f =0 used hereinafter. Parameters

w3�x0� =
− 3
PSx0

��L� + d�2 + x0
2

�− 2	S�11�0

4	S
2�L� + d�

, w4 =

�11�0

4	S
2�L� + d�2

�16�

are introduced.
Note, that Eq. �15a� is �33

b dependent via �b=��33
b /�11 and

Eq. �13�, while bare dielectric permittivity �33
b canceled in

Eqs. �15b� and �16� since they contain only the product
�11�0.

Both surface and depth profiles of equilibrium polariza-
tion distribution perturbed by the biased probe can be calcu-
lated from Eq. �15a�, where the bias dependence PV�V� is
given by nonlinear Eq. �15c�.

The bias dependence of the amplitude PV�V� given by
cubic Eq. �15c� is shown in Figs. 2�a� and 2�b� for different
x0 values and LiNbO3 material parameters. Note, that Eq.
�15c� reproduces the main features of the ferroelectric hys-
teresis far from the domain wall �i.e., bistability between the
state with single domain wall and the state with nascent do-
main is possible at �x0��d� as shown in Fig. 2�b�. This is a
direct consequence of GLD model �as opposed to rigid ferro-
electric model� adopted here.

Thermodynamic coercive bias Vc
� can then be found from

the condition dV /dPV=0, namely,

Vc
� =

w3�2w3
2 − 9w4� � 2�w3

2 − 3w4�3/2

27w4
2 . �17�

Corresponding hysteresis loop halfwidth �Vc= �Vc
+−Vc

−� /2
and imprint bias VI= �Vc

++Vc
−� /2 are

�Vc =
2�w3

2 − 3w4�3/2

27w4
2 , �18a�
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FIG. 5. �Color online� �a� Dependence of probe-induced domain
formation coercive biases Vc

+ �dashed curves� and Vc
− �solid curves�

vs the distance x0 between the domain wall and the probe apex.
Separation d between the effective charge modeling the probe field
and sample surface is fixed as 5, 10 and 15 nm �right labels with
arrows�. In the region where hysteresis is absent, dotted curves
represent the bias VI at inflection point of polarization dependence
on bias. Polarization P3 bias dependence in the regions I �no hys-
teresis loop, inflection point bias VI increases with distance x0 in-
crease as shown by arrow cross section with solid, dashed, and
dotted curves�, II �no hysteresis loop, inflection point bias VI

slightly decreases with distance x0 increase as shown by arrow cross
section with solid, dashed, and dotted curves�, and III �hysteresis
loop appears and becomes symmetric with distance x0 increase as
shown by solid, dashed, and dotted curves� is schematically shown
below at insets I–III. �b� Coercive biases Vc

+ �dashed curves� and Vc
−

�solid curves� dependence vs the effective distance d for the wall-
probe distance x0 fixed as 10, 20 and 50 nm �labels near the curves�.
Parameters of LiNbO3 are the same as in Fig. 3.
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VI =
w3�2w3

2 − 9w4�
27w4

2 . �18b�

It is easy to show that �Vc is defined only for the case of
x0

2�2�L�+d�2. Only in this region the bistability is possible.
The coercive biases properties will be considered in details
in Sec. IV. In Sec. III B we show that the hysteresis
corresponds to the stable domain formation below the
tip apex. At zero bias, the bistable nonzero solutions

PV�V=0�= �−w3��w3
2−4w4� /2w4 appear under the condi-

tion w3
2�4w4. The latter inequality is equivalent to condition

x0
2�8�L�+d�2 �see Appendix C for details in Ref. 27�.

B. Equilibrium surface profile of domain wall perturbed
by the biased probe

At the sample surface z=0, stationary solution, given by
Eq. �15a� at f =0, can be simplified as

P3�x,y,0� = P0�x� + �
0

� dkk2��11�0J0�k�x2 + y2���k2 − 2	S�−1/2w̃�k�PV�V�
�1 + �0�k2��11� + ��33

b � − 2�33
b 	S� + 2�0k���11�33

b ��k2 − 2	S�
. �19�

For a point-charge approximation of a probe, w̃�k�
=d exp�−kd� /k in accordance with Eq. �9�. For typical ferro-
electric material parameters and �33

b �10, the inequality
2�0�33

b �	��1 is valid, and so the integral in Eq. �19� reduces
to the approximate explicit form �see Appendix D for details
of Ref. 27�

P3�x,y,0� � P0�x�

+
��11�0/�− 2	S�d2 · PV�V�

�d��/�− 2	S� + d2 + x2 + y2��d2 + x2 + y2
.

�20a�

In particular, polarization below the probe apex has the form

P3�r = 0� � − PS tanh
 x0

2L�

� +� �11�0

− 2	S

PV�V�
���/�− 2	S� + d�

.

�20b�

The bias dependence of P3�r=0� is illustrated in Figs. 2�c�
and 2�d� for different x0 values.

Under the absence of pinning centers, thermodynamically
equilibrium domain-wall boundary xDW�y� can be deter-
mined from the condition P3�xDW,y ,0�=0. Using expression
�10b� for P0�xDW� in Eq. �20�, we obtained the parametric
dependences

xDW��� = x0

+ 2L� arctanh� − ��11�0/�− 2	S�d2 · PV/PS

�d2 + �2 + ��/�− 2	S�d��d2 + �2� ,

�21a�

yDW
2 ��� = �2 − xDW

2 ��� , �21b�

valid near the wall ��x0��d�. Parameter � is the radial coor-
dinate. Far from the wall ��x0�L�+d�, the equilibrium do-
main appears at biases larger the coercive. The correspond-
ing radius ��V� can be determined from the cubic equation


d2 + �2 + d� �

− 2	S
��d2 + �2

= d2� �11�0

− 2	S

PV�V�
PS tanh�x0/2L��

. �22�

Equilibrium surface profile of domain wall affected by
biased probe is shown in Fig. 3 for LiNbO3 material param-
eters. For a chosen polarization distribution, the wall attrac-
tion to the probe corresponds to positive biases �see Figs.
3�a� and 3�c��, while the domain-wall repulsion from the
probe takes place at negative biases �see Figs. 3�b� and 3�d��.
For chosen material constants and probe parameter d
=5 nm, characteristic depth of domain-wall bending is close
to d, as anticipated from Eq. �15a�. Note that domain-wall
boundary bending by biased probe is observed at distances
�x0��d �see Fig. 4 for x0=0 ,2 ,3 nm�, while the probe-
induced domain formation appears at �x0�d �see Fig. 4 for
x0=5 ,7.5 nm�.

IV. DISCUSSION

Dependence of thermodynamic coercive bias for probe-
induced domain formation Vc

� calculated from Eq. �17� on
the distances x0 and d is shown in Figs. 5�a� and 5�b� by
dashed and solid curves, correspondingly. The presence of
Vc

� indicates the ferroelectric hysteresis appeared in the re-
gion x0

22�L�+d�2. The asymmetry of Vc
� corresponds to

the domain nucleation and bending toward or away from the
tip �compare dashed and solid curves in Figs. 5�a��.

Hysteresis bias changes near the domain wall is due to the
fact that the wall can bend toward or away from the tip and
its depolarization electric field facilitates or impedes the tip-
induced domain nucleation. As shown in Fig. 5�b�, Vc

+ curves
are monotonic since the tip and depolarization field add to-
gether �see dashed curves�; Vc

− curves have minimum since
the tip and depolarization field are opposite �see solid
curves�.

In the region �x0���2�L�+d�, hysteresis is absent. Only
the domain-wall bending in different directions depending on
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the bias sign takes place. The dotted curves correspond to the
bias VI given by Eq. �18b�, i.e., the inflection point of polar-
ization dependence on bias where the second derivative
d2PV /dV2 is zero. It can be easily shown that this quantity
corresponds to the loop imprint VI= �Vc

++Vc
−� /2 in the hys-

teresis region. Appearance of maximum on VI curves can be
attributed to the linear and nonlinear contributions w3 and w4
of different signs, while both contributions are monotonic
functions of x0 �see Eq. �16� and insets I–III�. Physically, the
imprint bias originates from nonzero depolarization field �3c�
induced by the curved domain wall and nonlinear long-range
interactions �P4 asymmetry near the wall. Note that depo-
larization field is zero for the initial wall profile P0�x�. From
the symmetry considerations, depolarization field and inter-
action energy are zero when the tip is exactly at the wall, i.e.,
x0=0. The domain-wall bending results in the depolarization
field that facilitates domain nucleation in the proximity of the
bend, thus reducing local nucleation bias. The interaction
energy asymmetry vanishes far from the wall when the
nucleating domain shape becomes axially symmetric. Basi-
cally, the peak of the imprint represents, for a tip effective
parameter d, the intermediate region where the wall influence

is seen, but also independent nucleation begins to occur �e.g.,
as shown in Fig. 4 for x0=3 nm�.

The dependence of hysteresis loop halfwidth �Vc= �Vc
+

−Vc
−� /2 given by Eq. �18a� and imprint bias VI given by Eq.

�18b� via the domain-wall position x0 is shown in Fig. 6 for
different d values.

As it was mentioned in Sec. II, the equilibrium domain-
wall bending could start at an infinitely small probe bias only
in the continuous medium approximation �no lattice or defect
pinning�. Let us postulate that the threshold �or critical� bias
Vth is required to move the domain-wall boundary by over-
coming the effect of the lattice-constant a discreteness. For
the considered case of one-dimensional-initial profile P0�x�,
maximal local deviation from the initial profile xDW=x0 ap-
pears at the sample surface �see Fig. 1�b��. In the activation-
less region �x0���2�L�+d�, absolute values of positive and
negative threshold biases Vth

� should be found numerically
from the condition max�x0−xDW�y=0,z=0���=a allowing
for Eqs. �20a� and �15c�. Absolute values of positive and
negative threshold bias Vth

� via x0 are shown in Fig. 6�d� by
solid and dashed curves respectively. In the case �x0�
�2�L�+d�, amplitude PV�V is with high accuracy, allow-
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FIG. 6. �Color online� Dependence of probe-induced domain formation hysteresis loop width �Vc= �Vc
+−Vc

−� /2 in linear-log �a� and
linear �b� scales as the function of the distance x0 between the domain wall and the probe apex for different effective charge-surface distances
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+ �solid curves� and Vth
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ing for the small value of lattice constant a�0.5 nm. So,
using Eq. �21a�, one leads to the expressions for negative and
positive threshold biases �see Appendix D of Ref. 27 for
mathematical details�

Vth
� = ��− 2	S

�11�0
tanh
 a

2L�

�PS

d2 �d2 + �x0 � a�2

+ L�d��d2 + �x0 � a�2. �23�

For infinitely thin domain wall L�→0, and hence Eq. �23�
leads to the expression Vth

�→ ��−2	 / ��11�0�PS�d2

+ �x0�a�2�3/2 /d2.
The phase diagram in coordinates x0 ,d� that contains

domain-wall bending regime �no hysteresis, Vc
�=0� to the

domain nucleation far from the wall �almost symmetric hys-
teresis loop with Vc

+�−Vc
−� and intermediate regime �asym-

metric hysteresis with Vc
+�−Vc

−� is shown in Fig. 7.
For the second-order ferroelectrics considered here, non-

zero energetic barrier for polarization reorientation existing
in the range of hysteresis, namely, at distances �x0��2�L�

+d� in the bias range Vc
−�V�Vc

+ should be calculated from
the free energy �15b� as Eb�V�=�G�PV

+ ,V�−�G�PV
− ,V�. Free

energy �G�PV� calculated from Eq. �15b� for different bias V
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are shown in Figs. 8�a�–8�c�. Orientation barriers via the
distance x0 from domain wall are shown in Fig. 8�d� for
different charge-surface separation d.

Within direct variational method the nonlinear behavior of
polarization was approximately described by substitution of
linearized solution of GLD equation into the free energy with
nonlinear terms. This allows us to obtain relatively simple
analytical expressions for domain-wall surface profile de-
pending on the one variational parameter PV. However, rig-
orously speaking, one should estimate the accuracy of the
one-parametric trial function. Recent comparison of approxi-
mate one-parametric trial function based on two-
dimensional-linearized solution of GLD equation with nu-
merical calculations performed by phase-field modeling has
shown that the one-parametric trial function works surpris-
ingly well for the description of domain-wall surface
broadening.23 This encourages us to use the present one-
parametric trial function for the description of the interaction
of a 180°-ferroelectric domain wall with a biased tip, its
surface bending near the probe and obtained radius of nucle-
ating domain. For more rigorous analytical calculations of
polarization depth profile and length of tip-induced domains,
at least two-parametric trial function may be necessary.

V. SUMMARY

We have analyzed in detail the voltage-dependent thermo-
dynamics and geometry of domain wall in the presence of
the localized electric field, corresponding to the physical
cases of domain-wall dynamics on the presence of biased
SPM probe. Linearized solution of Ginzburg-Landau-
Devonshire equation for wall profile is valid for small tip
biases. The direct variational method allowed extending this
analytical solution to the strongly nonlinear case of arbitrary
probe biases, providing the full thermodynamic description
of the system in terms of a single voltage-dependent scalar
potential. In the uniform field case, corresponding to the in-
finite tip-surface separation, the potential will become the
standard GLD potential function in the uniform field. Ob-
tained analytical expressions provide insight on how the
equilibrium polarization distribution depends on the wall fi-
nite width, correlation and depolarization effects, electro-

static potential distribution of the probe, and ferroelectric
material parameters.

Depending on probe parameters and probe-wall separa-
tion, the bias dependence of potential can be single valued,
corresponding to the activationless domain-wall bending. For
larger values of the probe-wall separation, the potential can
exhibit bistability, corresponding to ferroelectric hysteresis.
The switching between polarization directions +P3 and −P3
defines the thermodynamic coercive bias of tip-induced do-
main switching affected by the domain wall. We demonstrate
that for small tip-surface separations the domain-wall dis-
placement is activationless, corresponding to the wall bend-
ing toward or away from the probe. For intermediate separa-
tions, the process is affected by depolarization field induced
by wall bending, corresponding to thermodynamics nucle-
ation biases reduced relative to bulk values and appearance
of significant loop imprint. Finally, for large tip-surface sepa-
rations, the wall does not affect nucleation below the tip.

This analysis was performed for the case of ferroelectric
material with second-order phase transition in the absence of
lattice and defect pinning. It can further be extended to in-
corporation of lattice effects through the introduction of lat-
tice discreteness or periodic pinning potentials.
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